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Abstract. This article considers a posteriori error estimation of specified functionals for first-order systems of con-
servation laws discretized using the discontinuous Galerkin (DG) finite element method. Using duality techniques,
we derive exact error representation formulas for both linear and nonlinear functionals given an associated bilinear
or nonlinear variational form. Weighted residual approximations of the exact error representation formula are then
proposed and numerically evaluated for Ringleb flow, an exact solution of the 2-D Euler equations.
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1 Introduction

A frequent objective in numerically solving partial differential equations is the subsequent calculation of
certain derived quantities of particular interest, e.g., aerodynamic lift and drag coefficients, stress intensity
factors, etc. Consequently, there is considerable interest in constructing a posteriori error estimates for
such derived quantities so as to improve the reliability and efficiency of numerical computations. For an
introduction to a posteriori error analysis see Eriksson et al. [9], related work by Estep et al. [13], Parashivoiu
et al. [15], and the recent report of Oden and Prudhomme [14]. For hyperbolic problems and applications in
fluid mechanics see Johnson et al. [12], Giles et al. [10], Becker and Rannacher [4] and Süli [16].

This article revisits the topic of a posteriori error estimation of prescribed functionals with special em-
phasis and consideration given to nonlinear systems of conservation laws discretized using the discontinuous
Galerkin (DG) finite method, see for example Johnson and Pitkäranta [11], Bey and Oden [5], and Cockburn
et al. [7,8]. In a departure from this previous work, our DG formulation for systems of conservation laws
uses entropy symmetrization variables as discussed in detail in the companion papers by the second author
[3,2,1].

In Section 2, we briefly review the abstract model for a posteriori error estimation of functionals. Next,
we consider the DG method for nonlinear systems of conservation laws and derive concrete error estimates in
terms of element residual and weight formulas. Section 4 numerically assesses the sharpness of these estimates
for the specific example of Ringleb flow which has a known exact solution via hodograph transformation.

2 A Posteriori Error Estimation of Functionals

Abstract model problem. In this section, we give an abstract presentation of a posteriori error estimation
for functionals based on duality techniques. Consider the following abstract variational problem: find u ∈ X
such that

A(g;u,v) = 0 ∀ v ∈ X, (2.1)

and the corresponding discrete problem: find uh ∈ Xh such that

A(g;uh,vh) = 0 ∀ vh ∈ Xh. (2.2)

Here X is a suitable function space, Xh ⊂ X is a discrete space, for instance, discontinuous piecewise
polynomials of degree k, and g some prescribed data. Note that boundary conditions are weakly imposed
in the variational statement thus permitting both u and v to reside in X. For brevity, we sometimes write
A(uh,vh) = A(g;uh,vh). Our objective is to estimate the error

M(u)−M(uh), (2.3)

in a given functional M(·). The first step is to derive an error representation formula.

Error representation: linear case. We first assume that A(·, ·) and M(·) are both linear. To derive a repre-
sentation formula for the error (2.3), we introduce the dual problem: find Φ ∈ X such that

A(v, Φ) = M(v) ∀ v ∈ X. (2.4)

Setting v = u− uh in (2.4) yields

M(u)−M(uh) = M(u− uh) (linearity of M)
= A(u− uh, Φ) (2.4)
= A(u− uh, Φ− πhΦ) (orthogonality)
= A(u, Φ− πhΦ)−A(uh, Φ− πhΦ) (linearity of A)
= −A(uh, Φ− πhΦ) (2.1),

where πhΦ ∈ Xh ⊂ X is an interpolant of Φ. Thus we have the error representation formula

M(u)−M(uh) = −A(g;uh, Φ− πhΦ). (2.5)
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Error representation: nonlinear case. Consider now the case of a nonlinear variational form A(·, ·) and
functional M(·). To perform the analysis given above, we introduce the following mean value linearizations

A(g;u,v) = A(g;uh,v) +A(g,uh,u;u− uh,v) ∀ v ∈ X (2.6)
M(u) = M(uh) +M(uh,u;u− uh), (2.7)

and the dual linearized problem: find Φ ∈ X such that

A(g,uh,u;v, Φ) = M(uh,u;v) ∀ v ∈ X. (2.8)

In addition, we have the following orthogonality relation

A(g,uh,u;u− uh,vh) = 0 ∀ vh ∈ Xh. (2.9)

Proceeding in the same fashion as above, using simplified notation for brevity,

M(u)−M(uh) = M(u− uh) (2.7)

= A(u− uh, Φ) (2.8)

= A(u− uh, Φ− πhΦ) (2.9)
= A(u, Φ− πhΦ)−A(uh, Φ− πhΦ) (2.6)
= −A(uh, Φ− πhΦ), (2.1)

thus yielding the following final error representation formula

M(u)−M(uh) = −A(g;uh, Φ− πhΦ). (2.10)

Abstract a posteriori error estimates. Starting from (2.5) or (2.10), we derive various error estimates by
estimating the right hand side of (2.10) using standard inequalities. Later, the sharpness of these inequalities
is numerically assessed. Consider the following sequence of direct estimates

|M(u)−M(uh)| =
∣∣∣∑
T

AT (g;uh, Φ− πhΦ)
∣∣∣ (2.11)

≤
∑
T

|AT (g;uh, Φ− πhΦ)| (2.12)

≤
∑
T

RT (uh) ·WT (Φ), (2.13)

where AT (·, ·) denotes the restriction of A(·, ·) to the element T . Further RT (uh) is a computable estimate
of the residual of uh on T , and WT (Φ) is a weight on T describing the local influence of Φ, both are defined
below.

3 A Posteriori Error Estimates for the DG Method

First-order nonlinear system. Consider the prototype conservation law problem: find u : Ω → IRm such that

L(u) = f i(u),xi = 0 in Ω, (3.1)

Ã−(n; g,u)(g − u) = 0 on Γ,

where Ω is a domain in IRd with boundary Γ with local exterior normal vector n and Ã(n;u) ≡ nif
i
,u

is the flux Jacobian matrix. In addition, Ã(n; g,u) denotes the mean value matrix obtained from the path
integration

Ã(n; s, t) =
∫ 1

0

Ã (n; t+ θ(s− t)) d θ (3.2)
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and P±(n; s, t) the associated characteristic projectors. Throughout, we assume that u denotes the sym-
metrization variables so that the matrices Ã are necessarily symmetric.

Next, consider a finite element tessellation T of Ω composed of nonoverlapping elements Ti, T = ∪Ti,
Ti ∩ Tj = ∅, i 6= j and ΓT the tessellated boundary. The prototype system can be restated in variational
form3: find u ∈ X such that ∀ v ∈ X

A(g;u,v) =
∑
T∈T

(
(L(u),v)T + 〈Ã−(n; g,u)(g − u),v〉∂T∩ΓT (3.3)

+ 〈P−(n;u−,u+)[f(n;u)]+−,v−〉∂T\ΓT
)

Note that other mathematically equivalent formulations are possible by grouping together terms element-
wise and edge-wise. The above particular grouping has been chosen as it reflects a discrete balance of
conserved quantities on an element-by-element basis. In Section 4, we briefly revisit the possibility of alternate
groupings although our numerical results show that the element-wise grouping presented above yields superior
estimates.

A posteriori error estimate residuals and weights. A straightforward application of Cauchy-Schwarz inequal-
ity (with Ã0 introduced from entropy symmetrization theory for dimensional consistency) (3.3) yields the
following element residuals RT and weights WT for use in (2.13)

RT (uh) =

 ‖L(uh)‖Ã−1
0 ,T

‖P−(n;u−,hu+,h)[f(n;uh)]+−‖Ã−1
0 ,∂T\ΓT

‖Ã−(n, g;uh)(g − uh)‖Ã−1
0 ,ΓT

 (3.4)

WT (Φ) =

 ‖Φ− πhΦ‖Ã0,T

‖Φ− πhΦ‖Ã0,∂T\ΓT
‖Φ− πhΦ‖Ã0,ΓT

 (3.5)

Approximating the dual problem. The weight formulas (3.5) require the calculation of the quantity Φ− πhΦ
from the dual problem which requires a priori knowledge of both u and uh for use in the mean value lin-
earizations (2.6) and (2.7). Since u is not generally known, we supplant this calculation with the approximate
discrete counterpart to (2.8): find Φh ∈ Xh such that

A(g,uh,uh;vh, Φh) = M(uh,uh;vh) ∀ v ∈ Xh. (3.6)

Observe that A(g,uh,uh;v, Φh) and M(uh,uh;vh) are precisely the Jacobian linearized forms of the respec-
tive operators. Using the techniques described in Barth [3,2], exact Jacobian derivatives of the DG scheme for
systems of conservation laws have been derived and used in all subsequent calculations. We have investigated
the computation of the needed dual solution terms using two different techniques:

(1) High-order approximation. Suppose u(k)
h denotes a numerical solution computed in X(k)

h . Embed u(k)
h in

X
(l)
h , l > k and approximate Φ−π(k)

h Φ ≈ Φ(l)
h −π

(k)
h Φ

(l)
h . This technique is employed in the calculations given

below.

(2) Recovery post-processing. Let R(l)
h Φ

(k)
h : X(k)

h 7→ X
(l)
h denote a recovery operator, approximate Φ −

π
(k)
h Φ ≈ R(l)

h Φ
(k)
h − Φ(k), l > k. Recovery operators based on local compact supported least-squares fitting

are considered in a forthcoming report by the present authors.

4 Numerical Results

To evaluate the accuracy of the error representation formulas given in Sect. 2, Ringleb flow (an exact
solution of the 2-D Euler equations obtained via hodograph transformation, see [6]) is computed in the
channel geometry shown in Fig. 4.1(a). Next, the vertical force component exerted on the channel walls is
3 In actual implementations it is desirable to use an integrated-by-parts form (see for example [3,2]) so that exact

discrete conservation is achieved on elements with inexact quadrature and/or inexact path integration (3.2).
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(b) Primal solution iso-density con-
tours.

(c) Dual solution iso-density contours.

Fig. 4.1. Ringleb flow test problem. Primal and dual solutions calculated using the DG discretization with
cubic elements for the vertical force functional MΨ (u).

computed from the functional

MΨ (u) =
∫
ΓWall

(Ψ · n) p(u) d l (4.7)

with p(u) the fluid pressure and Ψ a constant vertical vector. Iso-density contours of the Ringleb primal and
dual solutions are given in Figs. 4.1(b-c).

We now evaluate the validity and sharpness of the error estimate formulas (2.11)–(2.13) and (3.5). In
Fig. 4.2 we graph for constant (a) and linear (b) approximation: (◦) the exact error; (×) estimate (2.11);
(M) estimate (2.12); (O) estimate obtained from element-edge form of (3.3); (�) estimate (3.5). In all cases
the dual problem is defined by (3.6) and solved using cubic polynomials. The difference between (◦) and
(×) is caused by linearization, i.e., replacing u in (2.8) by uh to get (3.6). This appears to be a very
small error. Next, the more significant loss due to use of the Triangle Inequality is graphed in (M). This
prevents cancellation between elements. Further error is introduced via Cauchy-Schwarz (�) thus preventing
cancellation within the element. Finally, note that the element based estimate (M) is notably superior to
the element-edge based estimate (O), where in the latter case contributions are grouped together in such a
way that element conservation is violated. Based on our numerical experimentation, we propose the adaptive
method:
• Evaluate a stopping criterion via |A(uh, Φ− πhΦ)Ω|.
• Evaluate an adaptation criterion via |A(uh, Φ− πhΦ)T |.

In addition, the adaptation criterion may be further improved by the use of sharpened variants of the Triangle
and Cauchy-Schwarz Inequalities. We consider these topics further in a forthcoming paper.
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Fig. 4.2. Ringleb flow problem. Sharpness of error estimate inequalities for the vertical force functional (4.7).

5. K. Bey. A Runge-Kutta discontinuous finite element method for high speed flows. Technical Report 91-1575,
AIAA, Honolulu, Hawaii, 1991.

6. G. Chiocchia. Exact solutions to transonic and supersonic flows. Technical Report AR-211, AGARD, 1985.
7. B. Cockburn, S.Y. Lin, and C.W. Shu. TVB Runge-Kutta local projection discontinuous Galerkin finite element

method for conservation laws III: 1-D systems. J. Comp. Phys., 84:90–113, 1989.
8. B. Cockburn and C.W. Shu. The Runge-Kutta discontinuous Galerkin method for conservation laws V: Multi-D

systems. Technical Report 201737, ICASE, NASA Langley, 1997.
9. K. Eriksson, D. Estep, P. Hansbo, and C. Johnson. Introduction to numerical methods for differential equations.

Acta Numerica, pages 105–158, 1995.
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